Compact Zero-Knowledge Proofs of Small Hamming Weight

Sabine Oechsner

Aarhus University

Joint work with Ivan Damgård, Peter Scholl, Mark Simkin (Aarhus University), Ji Luo (Tsinghua University)

THE SETTING

Proof of small Hamming weight

efficient zero-knowledge proof

Our contribution

Zero-knowledge protocol with

- unconditional soundness
- communication overhead independent of n

Applications: actively secure protocols

Outline

1. Zero-knowledge protocol for small Hamming weight

- 2. Applications:
 - -k-out-of-n OT with active security
 - Separable accountable ring signatures

ZERO-KNOWLEDGE PROTOCOL OF SMALL HAMMING WEIGHT

Building blocks

Homomorphic commitments

- Notation: $\langle x \rangle$
- Additively homomorphic:

$$u \cdot \langle x \rangle + v \cdot \langle y \rangle = \langle ux + vy \rangle$$

Zero-knowledge protocols

- π_{zero} : proof of commitment $\langle 0 \rangle$ to 0
- π_{mult} : proof of multiplication of $\langle r \rangle$ and $\langle s \rangle$ in commitment $\langle r \cdot s \rangle$

Our protocol idea

Prover

APPLICATION: K-OUT-OF-N OT WITH ACTIVE SECURITY

Oblivious transfer

1-out-of-2:

Sender

k-out-of-n OT from 1-out-of-2 OT

• Passive security:

• Security against malicious receiver: Ensure that receiver can't learn more than k strings

k-out-of-n OT with active security

Previous solutions:

- either "approximately k"-out-of-n OT
- or require generic 2PC

Our result:

- black-box construction from 1-out-of-2 OT and correlation-robust hash function
- amortized communication overhead of $O(\kappa n)$

k-out-of-n OT with active security

Step 1: From 1-out-of-2 OT to homomorphic commitment scheme

(extending known constructions)

k-out-of-n OT with active security

Step 2: From \mathcal{F}_{COM} to correlated 1-out-of-2 OT to k-out-of-n OT with hash function

APPLICATION: SEPARABLE ACCOUNTABLE RING SIGNATURE

Ring signatures

Dynamic ring of potential signers P_1, \ldots, P_n

Any P_i can sign anonymously of behalf of ring

Separability: different signing algorithms or keys **Accountability:** signer can dynamically pick a designated opener that can revoke anonymity

Our construction

Separable ring signatures:

- Or-composition of Σ-protocols for knowledge of one of secret keys [CDS94] + Fiat-Shamir
- Signer controls randomness

<i>e</i> ₁	σ		e _j	•••	e _n
π_{HW} on e_i					

Accountability:

- Encode identity into "randomness"
- Prove correct encoding using π_{HW}
- Designated opener gets trapdoor

MORE APPLICATIONS

More applications

Active security for ...

- More efficient preprocessing for TinyTables
- Mixing with public verifiability
- PIR with malicious client

CONCLUSION

Conclusion

Efficient proof of small Hamming weight

- Zero-knowledge with unconditional soundness
- Communication overhead independent of n
- Idea: prove that secret polynomial evaluates to 0

Applications:

- k-out-of-n OT with active security
- Separable accountable ring signatures

Thank you.